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Abstract—This paper presents state-of-the-art results on 1-GHz
surface transverse wave (STW) oscillators running at extremely
high loop power levels. The high-Q single-mode STW resonators
used in these designs have an insertion loss of 3.6 dB, an unloaded
Q of 8000, a residual PM noise of —142 dBc¢/Hz at a 1-Hz carrier
offset, and operate at an incident power of up to +31 dBm in the
loop. Other low-QQ STW resonators and coupled resonator filters
(CRF), with insertion losses in the 5-9 dB range, can conveniently
handle power levels in excess of two Watts. These devices were
incorporated into voltage controlled oscillators (VCO’s) running
from a 9.6-V dc source and provide an RF output power of +23
dBm at an RF/dc efficiency of 28%. Their tuning range was 750
kHz and the PM noise floor was —180 dBc/Hz. The oscillators,
stabilized with the high-} devices and using specially designed
AB-class power amplifiers, delivered an output power of +29
dBm and exhibited a PM noise floor of —184 dBc/Hz and a 1-
Hz phase noise level of —17 dBc¢/Hz. The 1-Hz phase noise level
was improved to —33 dBc/Hz using a commercially available
loop amplifier. In this case, the output power was +22 dBm.
In all cases studied, the loop amplifier was found to be the factor
limiting the close-to-carrier oscillator phase noise performance.

I. INTRODUCTION

URFACE acoustic wave (SAW) based oscillators are well
known for their excellent phase noise performance in the
frequency range of 0.1-1 GHz [1]-[3]. Resonator stabilized
oscillators, operating in the 400-500 MHz range and featuring
a phase modulation (PM) noise floor due to thermal noise
of —184 to —185 dBc¢/Hz, were demonstrated recently [1],
[3]. Along with a PM noise level at 1-Hz intercept of —48
to —55 dBc/Hz, these oscillators are considered to represent
the current state-of-the-art phase noise performance in this
frequency range. One limiting factor to further improvement of
the oscillator noise floor is the power handling capability of the
SAW device, which limits the maximum drive power level to
about +26 dBm even if large area multitrack designs are used.
An example was presented in [4] where a very high power
SAW resonator failed after 200 weeks of operation at a power
dissipation level of 130 mW (stress = 200 x 106 N/m?).
The fundamental power handling limit can be extended if
the acoustic resonator uses the STW mode. As shown in [5],
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and experimentally verified in [6], devices with relatively small
acoustic area can conveniently handle orders of magnitude
higher drive power levels without degradation in performance.
About a year ago, this unique feature was used to design a 1-
GHz low noise voltage controlled oscillator (VCO) which was
running at a loop power of 434 dBm and demonstrated a PM
noise floor of —194 dBc/Hz [7]. This oscillator featured excel-
lent tuning and wide-band frequency modulation capabilities.
Its RF/dc efficiency was 19%.

In this paper, we present results from a one-year research
effort on improved STW high power oscillators. Different
STW resonant devices and 1-GHz fixed frequency and voltage
controlled oscillators are characterized. The phase noise per-
formance of the STW devices and oscillators, measured with
different methods, is presented and discussed.

II. STW RESONANT DEVICES FOR
POWER OSCILLATOR APPLICATIONS

Compared to SAW resonators, STW devices offer a greater
flexibility in the design of metal strip resonators and narrow-
band filters for oscillator applications. This increased design
flexibility comes from the fact that metallization allows an
additional degree of freedom in controlling the resonant
while keeping low device insertion loss even in simple res-
onator configurations [8], [9]. This unique feature has been
used extensively in the design of different kinds of single
and multimode resonators and coupled resonator filters with
a loaded @), Q1,, ranging from 5004400 and an insertion loss
well below 10 dB at 1 GHz. All these devices can conveniently
handle drive power levels in excess of two Watts and were
found to operate without obvious performance degradation
for several months in different fixed frequency and voltage
controlled high power oscillators. The design details for such
devices have been well documented in [5], [6], [10], and [11].
Here, we will characterize only some of the devices used in
this study.

Fig. 1(a)—(d) presents data on a 1-GHz single mode high—Q
resonator which was designed at the Institute of Solid State
Physics in Sofia, Bulgaria, and fabricated using all quartz
package (AQP) technology (AQP STW devices provided by
G. K. Montress and T. E. Parker). This device has an insertion
loss of 3.6 dB, a loaded @ of 2740, and an unloaded @ of 8000.
It was intended for use in a fixed frequency power oscillator.
However, if run at a loaded @ of about 3000, a tuning range
of about 180 kHz over the 1-dB device bandwidth should be
possible [see Fig. 1(b)].

U.S. Government work not subject to U.S. copyright.
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Fig. 1. Characteristics of a single mode high-Q AQP STW device. (a) Frequency and phase responses. (b) Detailed frequency and group delay responses.

(c) Input reflection coefficient S11. (d) Output reflection coefficient S22.

A much wider tuning range can be achieved with low-Q
resonators. Design techniques for obtaining lower device Q

are described in [6], [10], and [11]. The device, characterized

in Fig. 2, has an insertion loss of 5.2 dB, a loaded Q of 1500,
and allows a tuning range of about 700 kHz when the VCO
is tuned over the 3-dB device bandwidth.

If even wider tuning ranges are necessary, the two-pole
coupled resonator filter, characterized in Fig. 3, can be used.
This device has an insertion loss of 8.5 dB and a 1-dB
bandwidth of 1.5 MHz. As is evident from its phase response,
a variable phase shift of 0~180° would be necessary for tuning
over the entire 1-dB bandwidth. In this case, three cascaded
C-L-C varactor tuned phase shifters could be used [4].

All devices were fabricated in a standard single-step pho-
tolithographic process with careful control over the metalliza-
tion. The resolution required was about 1.3 pm, which can
readily be realized with almost all kinds of photolithographic
equipment available to date.

L. STW HiGH LooP POWER OSCILLATOR DESIGNS

As demonstrated with the STW oscillator described in [7],
a substantial improvement in the thermal noise floor can be
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Fig. 2. Frequency and group delay responses of a low-Q STW resonator
with a loaded-Q of 1500 and an insertion loss of 5.2 dB.

achieved if the loop amplifier is capable of generating output
power levels in excess of two Watts. At GHz frequencies,
these levels are very difficult to achieve with A-class amplifiers
using bipolar transistors which are known for their low 1/f
noise. Although some expensive power transistors can generate
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Fig. 3. Frequency and phase responses of a two-pole coupled resonator filter
with a 1-dB bandwidth of 1.5 MHz.

a high output power in the A-class of operation and a 50-
environment, their efficiency rarely exceeds 10%. An elegant
and inexpensive solution to the efficiency problem can be
obtained if AB-, B-, or C-class amplifiers are used. With one
of the STW oscillators, using an AB-class loop amplifier [7],
we were able to achieve an RF/dc efficiency of 36% with an
oscillator output power of +28 dBm at 1 GHz. One major
drawback of AB-class amplifiers is that they require careful
reactive matching at their input and output in order to be able
to work efficiently in a 50- environment. This is because the
input and output impedances of the power transistors in the
AB-class of operation are up to an order of magnitude lower
than 50 €2. If such an amplifier is to be used in an STW power
oscillator, the matching circuits under closed-loop conditions
have to be changed in order to achieve a low reflection
coefficient at the input and output of the STW device since its
impedances also differ from 50 Q [see Fig. 1(c), (d)]. Under
these circumstances, measuring the oscillator’s loop power is
a serious problem. Just breaking the loop open and loading it
on both sides with the 50-Q impedances of the measurement
system will not work because this will seriously deteriorate
matching. Therefore, the loop power has to be measured under
closed-loop conditions. We have solved this problem by means
of the capacitive probe shown in Fig. 4. It consists of a piece of
coaxial cable ending with a small 0.47-pF capacitor soldered
in series with the center conductor. The ground skirt is split
into two parts, symmetrically bent on both sides of the cable
in such a manner that the probe can conveniently touch any
point of the loop’s strip lines and ground planes, surrounding
them, as shown in Fig. 4. The reading is obtained from a
spectrum analyzer or power meter connected to the other end
of the cable. The probe is calibrated by touching the load to the
oscillator’s output where the power can be precisely measured
with a power meter. This reading will give the attenuation
of the probe (14 dB, in our case). The loop power at any
other point of the loop is obtained by adding the probe loss
to the reading. We found that the probe did not deteriorate
the matching conditions at the points of measurement. Only a
slight frequency shift of up to 20 ppm was observed. This shift
was well within the tuning range over which the oscillator’s
output amplitude was observed to be constant.

SMA connector

l e
to spectrum analyzer
loss: 14 dB8

s

—

ground plane

loop strip line

Fig. 4. A capacitive probe for evaluation of the oscillator loop power under
closed-loop conditions.
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Fig. 5. Simple STW high loop power oscillator with directional coupling to
the load. Block and level diagram.

We investigated three types of high loop power STW
oscillators using highly efficient AB-class loop amplifiers.
Since the operating principle of such oscillators was described
in detail in [7], we will present only the block circuits and
loop level diagrams measured with the capacitive probe.

The simplest circuit, which requires a minimum number of
passive components and only one power transistor, is shown in
Fig. 5. It was designed to run with minimum loss around the
loop. This was achieved using an 11-dB directional coupler
instead of a 3-dB power splitter for load coupling. Thus,
the loss (typically 3.5-4 dB) of a 3-dB power divider was
reduced to 0.6 dB. With a loop power of +30 dBm and an
output power of 419 dBm, the oscillator was found to provide
stable fixed frequency operation and was insensitive to load
changes. Unfortunately, we were unable to achieve usable
frequency tuning with this design. The use of a varactor tuned
phase shifter in the loop made the oscillator unstable due to
a deterioration of the matching conditions. Another drawback
of this design was that the gain compression had to be kept
very low (1-2 dB) because of the poor limiting action of the
AB-class amplifier. Increasing the loop power results in an
increase of the collector current which can thermally overload
the transistor.

The tuning and limiting problem was readily solved with
the circuit in Fig. 6. Here, an A-class amplifier is incorporated
between the variable phase shifter (VPS) and the AB-class
power amplifier. Its function is twofold. First, it provides
isolation between the VPS and the power stage, and second, it
performs the limiting function, thereby providing a safe input
power level to the power transistor. Thus excellent tuning
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Fig. 7. A 9.6-V VCO for portable applications with RF to dc efficiency of
28% and an output power of 200 mW.

over the 3-dB device bandwidth and stable amplitude over
the entire tuning range are assured. However, one has to be
careful when adjusting the gain compression. Too much gain
compression will result in a deterioration of the overall phase
noise performance, as is evident from the phase noise plot in
Fig. 19 which will be discussed later in this paper. A trade-off
between gain compression, loop loss, device ), and tuning
range can be achieved by adding series capacitors to the STW
device. This increases its insertion loss and loaded Q. In this
case, a readjustment of the matching circuits is necessary.
Another 1-2 dB variation of the gain compression is also
possible by unbalancing the Wilkinson power divider. This
changes the output power accordingly.

The circuit in Fig. 6 was stabilized with the high-Q device
from Fig. 1. The loop power was measured to be +35 dBm
and the incident power on the STW device could be altered
between +28 and +31 dBm by unbalancing the power divider.
According to Leeson’s model, this oscillator should have a
PM noise floor of —195 dBc/Hz due to thermal noise [1]. The
amplitude modulation (AM) noise floor due to thermal noise
should be similar to the PM noise floor. However, AM noise
levels were not measured on these oscillators.

Fig. 7 shows a highly efficient high power VCO which uses
the same concept. Since a wide tuning range of 700 kHz
was necessary, the oscillator was stabilized with the low-Q
resonator from Fig. 2. It was designed to run from a 9.6-V
dc rechargeable NiCd battery for portable applications. The
output power is +23 dBm and the RF/dc efficiency is 28%.
When run at a supply voltage of 16 V, the output power
increased to +28 dBm and the RF/dc efficiency decreased
by only 3%.

Fig. 8, curves (A)—(C) shows the tuning characteristics of
the high power VCO’s from Figs. 6 and 7. They all were
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Fig. 8. Tuning characteristics of the power VCO’s: (A) A 1-W VCO using
the high-Q device from Fig. 1. (B) A 9.6-V wide tuning range VCO with
28% efficiency. (C) A wide tuning range VCO at 16-V supply voltage and
+28-dBm output power.

obtained with a single C-L-C type VPS which was designed
to deliver about 60° of variable phase shift [4]. Cascading two
identical phase shifters and using the CRF from Fig. 3 would
increase the tuning range to 1.5 MHz with a tuning voltage
of 0-9.6 V.

IV. PHASE NOISE MEASUREMENTS

The major goal of this study was to evaluate the phase noise
performance of STW power oscillators at 1 GHz since this is
important to a variety of applications in this frequency range.
Since it is difficult to obtain the overall oscillator phase noise
data for Fourier frequencies ranging from 1 Hz to 10 MHz
away from the carrier with one single measurement, especially
if two identical oscillators are not available, we set up different
measurement systems and performed several measurements
on the high power oscillators to make sure that the various
systems delivered comparable results.

First, we tried to measure the oscillator PM noise floor.
The simplest and most forgiving system for phase noise floor
evaluation is the single-channel frequency discriminator with
coaxial cable of delay 74, shown in Fig. 9. This system is
not sufficiently sensitive for close-to-carrier measurements on
stable oscillators but provides very good results for Fourier
frequencies as high as 35% of the frequency at which the
first null of its transfer function occurs (f <0.35/7,) [12].
Moreover, it requires only one oscillator and adapts to small
changes of the oscillator’s frequency during the measurement.

If the outputs of two identical channels of this system are
cross-correlated in a two-channel FFT analyzer (Fig. 10), then
the uncorrelated system noise averages towards zero as 1/y/n,
where n is the number of averages. The system sensitivity can
usually be improved by 20-25 dB [12]-[14] by using this
approach. This cross-correlation concept can also be applied
to a measurement system using two identical oscillators (Fig.
11). The system phase noise floor in this case can be better than
—195 dBc/Hz, even at very high Fourier frequencies [12]-[14].

Residual noise measurements on the high-@Q STW device
from Fig. 1 were performed with the setup in Fig. 12, adapted
from [4]. A low PM noise frequency synthesizer (HP 8662
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A) was used to make phase noise measurements for frequency
offsets from 2 Hz to 1 kHz from the carrier. To provide high
enough mixer drive level and sufficient suppression of the
synthesizer AM noise, we amplified the source signal with
two cascaded low PM noise amplifiers (UTO 1023, Avantek),
the second of which was driven into 3 dB of gain compression.

Close-to-carrier phase noise measurements on very low-
noise STW oscillators using the low PM noise amplifier (UTO
1023, Avantek) were performed with the system setup in Fig.
13. This setup requires that the reference source (in this case, a
low-noise frequency synthesizer) be substantially quieter than

the STW oscillator. In our case, this approach does not hold
for offsets greater than 1 kHz.

V. EVALUATION OF THE PHASE NOISE DATA

Fig. 14 shows the phase noise plot of two nearly identical
power oscillators using the design in Fig. 6. The loaded Q
of the STW devices was adjusted to a value of about 4000,
which is half of the unloaded @). The output power in this
case was +29 dBm. PM noise floors of —184 and —182
dBc/Hz were measured with the single-channel frequency
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discriminator method for Oscillators 1 and 2, respectively.
The oscillators were then measured against each other using
the two-oscillator cross-correlation measurement configuration
from Fig. 11. Assuming equal noise in each oscillator, a noise
floor of —~181 dBc/Hz was obtained (Fig. 15).

Excellent results were obtained with the highly efficient
wide tuning range VCO at supply voltages of 9.6 and 16 V
[Fig. 8, curves (B) and (C)]. PM noise floors of —180 and
—185 dBc/Hz were obtained using the dual-channel frequency
discriminator cross-correlation method (Fig. 10). The 1-Hz

System for measuring the close-to-carrier phase noise of fixed frequency STW oscillators using the low PM noise power amplifier (UTO
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Fig. 15. Phase noise data of the high-Q oscillators obtained from the
two-oscillator cross-correlation measurement (Fig. 11) assuming equal noise.

intercept points were measured as —4 and —1 dBc/Hz, and
the ‘output power levels were 423 and +28 dBm at 9.6 and
16 V supply voltage, respectively. The RF/dc efficiencies were
accordingly 28 and 25% for both supply voltages.

The comparison of the phase noise plots for the high- and
low-@Q STW oscillators [Figs. 14 and 15 versus Fig. 16(A)
and (B)] shows the trade-off between the tuning range [Fig.
8, curves (A)~(C)] and the phase noise performance of the
investigated STW power oscillators.

Fig. 17 is the residual phase noise of one of the high-Q) STW
devices characterized in Fig. 1. The value of —142 dBc/Hz for
the PM noise at 1-Hz offset is a remarkable result for a 1-GHz
metal strip device. The system floor, measured with a 4-dB pad
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instead of the STW device, was 2—4 dB lower than the residual
noise of the STW device in the 1-100 Hz range. Both curves
show a 10-dB/decade slope for offset frequencies below 100
Hz. The steeper slope below 2 Hz for the STW device and
the 4-dB pad was due to noise added by the measurement
system. The actual STW device 1-Hz intercept should be
approximately —147 dBc/Hz. Further 1/f measurements on
other high-@) STW devices (AQP STW devices provided by
G. K. Montress and T. E. Parker) with a loaded @ of 2600
provided results that were indistinguishable from the system
noise floor measured as —142 to —144 dBc/Hz at 1 Hz.

The STW device, characterized in Fig. 17, was incorporated
into a simple oscillator loop using a power amplifier which is
known for its very low residual noise (UTO 1023, Avantek)
[3]. This test oscillator is shown in Fig. 18. It was first run
at 7-dB gain compression for minimum loop loss and the
output power was +24 dBm. Fig. 19 indicates a PM noise
floor of —187 dBc/Hz for this case. The 1-Hz intercept of
—21 dBc/Hz was 16 dB worse than what we expected from
the residual noise measurement on the STW device (Fig. 17).
Also, the slope was —25 dB/decade instead of —30 dB/decade.
We found that high gain compression was the reason for this
poor performance. After we reduced the gain compression to
1 dB, we obtained the results shown in Fig. 20. The 1-Hz
intercept became —33 dBc/Hz, only 4 dB worse than what we
would expect if the loop amplifier was ideally noiseless. A
measurement with a second low PM noise amplifier from the
same manufacturer indicated a 1-Hz intercept of —31 dBc/Hz
with the same STW device.
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VI DISCUSSION

The oscillators in Fig. 6 were designed for a phase noise
floor of —195 dBc/Hz. We actually measured an 11-14 dB
higher noise level. The reason is that these circuits were
designed for an STW device loss of 7-8 dB. The devices
we used had a loss of only about 3.5 dB. Adding a 4-dB
resistive pad to the loop would not solve the problem since
resistive attenuators are usually designed for a 50-2 system.
On one hand, this would seriously deteriorate the matching
conditions in the loop since AB-class amplifiers have input
and output impedances that significantly differ from 50 2. On
the other hand, the 4-dB pad would lower the drive power
level necessary for the AB-class of operation [7]. We tried
to increase the insertion loss of the STW device by adding
capacitors in series to it, but this also resulted in deterioration
of the matching conditions and the amplifier noise figure. It
would appear from these results that the effective noise figure
of the AB-class amplifier is likely to be very sensitive to the
source and load impedances, as well as the extent of gain
compression. This problem can be overcome by a second
iteration of the amplifier design, which would start after the
impedances and insertion loss of the STW devices to be used
are known.

The noise floor of the single transistor stage oscillator (Fig.
5) could not be measured because the output power was
insufficient for the measurement systems used and there were
no identical oscillators available. This concept should also
yield very low phase noise floors because it allows high loop
power and extremely low loop loss.
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Fig. 20. Phase noise data of STW oscillators using low PM noise amplifiers (UTO 1023, Avantek) and the residual noise of the STW device in these oscillators.

We expected a PM noise floor better than —181 dBc/Hz
from the two oscillator cross-correlation measurement (Fig.
5). Unfortunately, strong interference with local AM radio
stations caused the bump around 10 MHz and affected the
measurement. This bump was not observed with the single-
channel frequency discriminator measurement on the same
oscillators (see Figs. 9 and 14). This is probably due to the
fact that the single channel system was much simpler, easier
to set up, and less sensitive to parasitic interference.

VII. SUMMARY AND CONCLUSIONS

We have demonstrated state-of-the-art 1-GHz STW res-
onators for high power oscillator applications which feature
an insertion loss of 3.6 dB, a loaded-Q of 2740, an unloaded-
@ of 8000, and a residual phase noise level of —142 to
—144 dBc/Hz at the 1-Hz intercept. Other low-() resonators
and two-pole coupled resonator filters with an insertion loss
of 5-9 dB allow tuning ranges of 700-1500 ppm in highly
efficient STW power oscillators, which can run from supply
and tuning voltage sources below 10 V and are suitable for
portable applications. The output power and the noise floor
of such VCO’s are typically 423 dBm and —180 dBc/Hz,
respectively. Higher output powers in the +28 to +33 dBm
range and lower noise floors in the —185 to —194 dBc/Hz
range can be achieved if higher supply voltages are used (see
also [7]). The RF/dc efficiency is typically 25-28%, but a
value of 36% was also observed.

One-Watt oscillators running at a loop power of up to +35
dBm feature a PM noise floor of —184 dBc/Hz and a 1-
Hz intercept of —17 dBm. If a commercially available loop
amplifier is used (UTO 1023, Avantek), the phase noise floor
can be reduced to —187 dBc/Hz. Such oscillators typically run
at a loop power of 427 dBm and an output power of +24 dBm,
and demonstrate a 1-Hz intercept of —~21 dBc/Hz. A reduction

of the gain compression to 1 dB greatly improves the close-
to-carrier phase noise behavior resulting in a 1-Hz intercept
of —33 dBc/Hz and a slightly decreased output power of +22
dBm.

The results in Fig. 20 represent state-of-the art close-to-
carrier phase noise performance of 1-GHz STW high power
oscillators. They clearly indicate that the loop amplifier and
not the STW device is the major source of 1/f noise,
even when commercial loop amplifiers with the lowest 1/ f
noise, currently available, are used. Therefore, further work in
designing high power loop amplifiers with improved residual
phase noise performance is needed.

We believe that STW resonant devices have a strong po-
tential for use in designing extremely low noise, high power
oscillators in the lower GHz range. Since STW are surface
waves in nature and use very similar device geometries as
their SAW counterparts, we feel that STW devices may have
the same or similar size dependence for 1/f noise as that
observed with SAW resonators [15]. If this proves to be true,
then increasing the active acoustic area could improve the
device residual phase noise to values lower than —150 dBc/Hz
at a 1-Hz offset. For a 1/f noiseless amplifier, this would
correspond to a 1-Hz intercept of —45 dBc/Hz. However, a
size dependence for 1/f noise in STW devices has not yet
been demonstrated.

Finally, using careful loop ampiifier design, taking special
care for low gain compression, matching, and noise figure,
should result in a noise floor below —195 dBc/Hz and a 1-Hz
intercept of —45 dBc/Hz in the lower GHz range.
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